Inductive sensor With increased switching distance BI2-EG08K-AN6X

Type code	BI2-EG08K-AN6X
Ident-No.	4669500
Ident-No (TUSA)	S4669500
Rated switching distance Sn	2 mm
Mounting conditions	flush
Assured switching distance	≤ (0,81 x Sn) mm
Correction factors	St37 = 1; AI = 0.3; stainless steel = 0.7; Ms = 0.4
Repeatability	≤ 2 % of full scale
Temperature drift	≤ ± 10 %

3...15 % -25...+70 °C

Operating voltage 10... 30VDC Residual ripple \leq 10 % U_{ss} DC rated operational current ≤ 150 mA No-load current Io \leq 15 mA Residual current $\leq 0.1 \text{ mA}$ Rated insulation voltage ≤ 0.5 kV Short-circuit protection yes/ cyclic Voltage drop at I. \leq 1.8 V Wire breakage / Reverse polarity protection yes/ complete

Output function 3-wire, NO contact, NPN

Switching frequency 3 kHz

Construction Threaded barrel, M8 x 1

Dimensions 23.6 mm

Housing material Stainless steel, 1.4427 SO

Active area material Plastic, PA
End cap Plastic, PP
Max. tightening torque housing nut 5 Nm
Connection cable

Cable quality 4 mm, LifYY-11Y, PUR, 2m

MTTF 2283 years acc. to SN 29500 (Ed. 99) 40 $^{\circ}$ C

Switching state LED yellow

- Threaded barrel, M8 x 1
- Stainless steel, 1.4427 SO
- Large sensing range
- DC 3-wire, 10...30 VDC
- NO contact, NPN output
- Cable connection

Wiring Diagram

Functional principle

Inductive sensors detect metal objects contactless and wear-free. For this, they use a high-frequency electromagnetic AC field that interacts with the target. Inductive sensors generate this field via an RLC circuit with a ferrite coil.

Hysteresis

Ambient temperature

Distance D	2 x B
Distance W	3 x Sn
Distance T	3 x B
Distance S	1.5 x B
Distance G	6 x Sn
Diameter of the active area B	Ø 8 mm

